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Summary

The statistical performance of a dynamical system is considered.
Random initial conditions and/or random forcing functions cause the state
variables of the system to be random variables rather than deterministic
quantities. Nonetheless, a deterministic or nominal system path may be
defined, and the performance of the system evaluated in terms of the :
nominal plus the statistics of the perturbations from the nominal. Under
a ""'small" perturbation assumption, the perturbation equations are linear-
ized. Adding the assumption of Gaussian input statistics, the state pertur-
bations become Gaussian random variables. The probability that a given
function of the terminal state lie within certain bounds may then be com-
puted. Necessary conditions for the nominal initial conditions and/or

control programs which maximize that probability are given. A straight-

forward gradient approach for numerical solution is sketched.



Description of the Problem

The system under consideration is assumed to satisfy a set of simul-

taneous first order ordinary differential equations

x = f(x,u,w,t) (1)

where
X is an n-vector* of state variables
u is an m-vector of control variables
is a p-vector of random forcing functions

is an n-vector of known functions of x,u, w,t

o+ L s

is the independent variable (usually time)

() = 0

The system operates over a finite interval to =t= 1;f . Because of the

random forcing functions and/or random initial conditions, the state is a
random vector. It is assumed that the control programs u{t) will be the

same for each operation of the system. The state history is written
x(t) = x(t) + 8x(t) (2)

where )?(t) is, by definition, the solution of (1) when there are no random

perturbations. Thus, E(t) satisfies

X = f(x,u,0,t) (3)
. . dZ .
* Vectors are column vectors with the exception that a—B, where z is a scalar
d
and B is a vector, is a row vector. Hence, a_)z3 68 1is a scalar product.
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The initial conditions satisfy
x(t)) = x(t)) + 8x(t ) 4)

where Xx( to) may be partly given and partly free. The random component
of x(to) is 6x(t0), In this analysis it is assumed that 6x(t0) is a vector

of Gaussian random variables, with given covariance

T
6[6x(t0) 5% (to)] = X(t) (5)

The random forcing functions w(t) are assumed to be Gaussian white noise,

with covariance
T
elwtyw (1)) = Q(t) 8(t-T1) (6)

The initial time to is assumed given. The terminal time tf is

determined from
Q[x(tf),tf] =0 (7)

where ) is a known function of x and t. In particular, the nominal

terminal time ff is determined from (7) with X in place of x.

The problem is to choose the control programs u{t) and those com-

ponents of Xx( to) which are unspecified in order to maximize the probability
that a given scalar function (p[x(t,f)s tf ] will lie between two values a and

b. This definition of probability of success is only one possible problem
statement. It does, however, appedar more meuningful than many others

and is mathematically tractable.



The Linearized Perturbation Approximation

The problem as described is meaningful and usually will have a solution.
Unfortunately, there is no procedure available for evaluating the probability

that (p[x(tf), tf] lie between a and b besides the Monte Carlo approach,

unless major simplifications are introduced. The crucial approximation of
this (and many another) analysis is that the perturbations 6x(t) are always
""small enough' that a negligible error is made by linearizing the perturbation
equations:

of of

§x = —6x + —w
ox w

Because (8) is linear, and because 6x(t0) and w(t) are Gaussian, 6x(t)

will also be a vector of Gaussian random variables. Under this condition

the problem as stated can be solved.

The smallness assumption restricts the magnitudes of X(to), Q{t),
%
S S
ax2’ dw 3x’ dx du ’ dw du

(Because of assumption (6) it is necessary

82

to assume that (1) is linear in w( -—““2 = 0). The square of a white noise
W

component is not integrable.) There is no simpler way to state the restriction

than to say that (8) must produce 6x(t) with negligible error.

* The second partials are merely symbolic expressions for third order tensors
2
ot
i

—_— i,j,k=1,-~-,n.
such as 3% ox i)k , ,n
j k

(8)



Evaluation of the Probability of Success

The function (p[x(tf), tf] may be written

(p[x(tf),tf] = ¢Ex(tf),tf] Fde
= ¢ + do
To first order, consistent with (8),
L4 - .
deo = (Bx) _Gx(tf) + (pdtf
t=t
f
where
3@ . . 3¢7
® ox * t t—-{',
ot
and d'cf is determined from
0 =an = 22y sx(I) + Qadt
0x - f f
t=t
f
Substituting for dtf from (11)
20 _© 20 -
¢ = 1% " g Bx] _ Ox(ty)
:tf

)

(10)

(11)

(12)

Because 6x(ff) is a vector of Gaussian random variables, d¢ is a Gaussian

scalar. The probability that (,o[x(tf), tf] lie between a and b is

b- 2
1 ‘J‘ © oY /Zozdy

Jd = ——/—=
,\/277 Y a_(ﬁ

(13)



where

o2 = el(de)?] (14)

2
0 may be evaluated by integrating (;i_t el CT 6x GxTC ], with

oL T of
¢ +0 37 =0 (15)
T - 3¢ ¢ 3
C(t)=[——-:—-—:| (16)
f ax Q 9x L1
f
This gives
T
T af of
- lghxed j £ o5, tdr 17)
Equation (17) has used the noise statistics (6) and the relation
T 1 of
elox(tyw (1)) = 3 a—(t)Q(t) (18)
Necessary Conditions for an Extremal Solution
A standard variational approach is to adjoin the constraint equations
to the performance index by use of Lagrange multipliers. In this problem
the constraint equations are (3) and (15). The augmented J is written
b-¢ _ 2
- 2
J = — f Y/ a d
v2m O Y.
'E
c[TOTE x-S )C+C]}d7‘ (19)
o



where X (t) and 4(t) are each n-vectors of Lagrange multiplier

functions.

If J is tobe a relative maximum, it must be stationary with respect
to arbitrary small perturbations in E( to) and/or u(t). A small change

in J is given by

b-¢ 2, 2 2

dJ =-——1—U ey/20(1 +y—)dy]d
— 2 - 2
J2T o © o

_2, 2 _2,. 2
1 [e-(b-m) /207 (@-9) /20 ]da
271 O

f
T, of of e
ft A (22 8% + 55 bu - 8X)dr
0
t
E 3 Ky 3t T T af T 58 T T,:
+jt{axt ) ¢lex + [ o) glou + £ (30) 6L + 4'8Lldr
)
(20)
Equation (20) is the change in J due to changes in the nominal path. dg
may be determined from (17):
20 do = 2(L°X56 +j{chaf )6 2T 2L (—aiTJGE
odo = 2(L X8 C+ 358 379540 €
O
93 T 2f of T
i te 3w AU3) gléuldr (21)

d¢ is obtained directly from (12) by using bi—(ff) in place of 6x (Ef).



The & and 6.{ terms in (20) are integrated by parts, in the usual

manner. Finally, dJ may be written as
_ T, T P <P BQ 4T
ds = (Zrx &ttGC(t)+(>\6x)tt [,3( =25 - A
T Ef
T 2@ _ 2_5_2_ =7 T T of
e x TG ox )]_ 6%t + [ I+ N5y
t=t t
f o
T af o T 3f _ of 1
+ [ ) £l + 5o ax[c S s,) e116x(T)dT
Ef T
T3f 3 .T of T g_ a T af gf_’
+ jt {x vl e L Cond I S FynLe Q3,,) tildu(mdr
0]
Ef T ¢ T
“T T, 3f a T df
+jt 2 S et 2t Teenydr (22)
o]
where
b-0 2,. 2
1 -y /2
o =-——= [ Vs Ehay
V2T o a-@ o
—2, 2 —~2,. 2
g = — [e‘(b‘(P) /20 _ e‘(a“(P) /20 ]
NEX i
Necessary conditions for stationary J include
‘T T 3f T af o 3, Taf 37T
SR Sl Sl A 2 gl = o (23)



T - d¢ 0 3G T3 3¢ ¢ 3Q
Nty = [BES - SH e =G0 - T2
f l: 9x an 3X ' 9dX O 9x ]t=ff
T T
T T3 a,T3f,2f' _
(t) = 3L X)_,
(]
T >f a Taf Taf 3f T
N 3u T 3ultt 20 au[c Uz, Ll =0

Each term in the scalar product ()\Téi )o is zero either because the >‘o

or the Gio component is zero.

The necessary conditions are the coupled differential equations for
X, ¢, X, 1 with mixed boundary conditions, and (27) which gives the ex-

tremalizing u(t) as a function of x,{,X and 1.

One rather awkward possibility has been omitted in obtaining dJ.
This is the dependence of E upon u(ff). If there is such dependence,
Q

some constraint must be placed on u in the neighborhood of t

¢ in order

to avoid violating the continuity assumptions implicit in the dJ derivation.

Refs. [1] and [2]make attempts at imposing sensible constraints. This

problem is really too specialized to discuss further in this paper.

(24)

(25)

(26)

(27)



Simple Example Problem

Consider the one variable system which satisfies
. 2
X = -X + X (28)

Suppose that the problem is to maximize the probability that |x(1)| < a.

x (0) is free to be selected, 6x(0) is a Gaussian random variable with
2
variance 00 . There is no control variable u, and Q =t-1 (t0=0).

The linearized perturbation approximation in this case requires that |x|
be always much less than one. Hence, for the problem to be interesting,

a must be much less than one.

Equation (28) can be integrated analytically. The solution (for x0< 1)

is

1-x 1-x °© (29)

where x(0) = X . With solution (29), one can relate x = £a to the value of x

which produces it. Hence, the probability that -a £x(1) < a is equal to the

probability that -b2 < X < bl' For a=.05 b

1= .120, b2 = .158, the

probability that X lie between -.158 and +.120 is
.120-X 2

2
L J (:e—y /200 dy
Jem o - 158 -X_

(30)



since the integration is over the probability distribution of 6xo, and
6x0 =X - ;fo. For this example there is no need to use the necessary

conditions of the previous section because of the analytic solution (29).

- y2 /20 2
In fact, it is obvious from the nature of e o that the value of

;?O which maximizes (30) is the one which makes the lower limit the
negative of the upper limit. Hence, Eo =-,019 is the extremalizing

choice, for a = .05 and for any 00.

It is readily observable that x = ® in finite time if X >1.
Hence, b 1 must be less than one for the above computational pro-

cedure to be valid. Without solution (29), however, it would also be

necessary to limit oo so that a sufficiently accurate approximation

could be carried out.

For the system governed by (28), the perturbation equation before

linearization is
. — 2
6x = - (1-2x)6x + (6x) (31)
In order to use (8), the "smallness" assumption is
2 —
(8x) << (1 -2x) (32)
Thus, it is easy to observe the requirement that
2

q” << (1—220) (33)

It is apparent that |xo ‘ <<1, so (33) requires cr0 << 1.

10



Computing the Gradient of J for Iterative Optimization

The essence of a gradient method is calculation of the relation between
changes in the performance index and changes in the control variables or
parameters. Here, u(t) and/or )?(to) are the controls. The steps in a

straightforward gradient procedure are as follows:

1. Choose E(to) and u(t), calculate x(t) from (3), with

2
= . 3f df af
tf determined by (7). Calculate and store _ax’ —-—2, _aw’
2 2 2 ox
9 f S f 3 f
X 3w’ du dx’ dudw’

2. Calculate and store L(t) using (16) and (15). Calculate

o from (17). Calculate o and B.
3. Calculate and store £(t) using (26) and (25).

4. Calculate )\ (t) using (24) and (23), and simultaneously
calculate and store the left hand side of (27), which will

not be zero.

By following these steps, the predicted change in J due to a "'small" change

in S(_(to) and/or u(t) is

T — Taf Taf
i f {x 2T 2] s
o 3 (T af g T
z—g—[c aWQ(BW) ¢llsu(r)ydt

(34)



The gradient of J with respect to x (to) and u(t) is clear from (34).
References [3,4,5] describe procedures for using the gradient to improve

the choices of ')Z(to) and u(t).

It should be observed that any numerical scheme which has been
applied to deterministic optimization can (at least conceptually) be used for
maximizing J of this paper. Given the input statistics, J becomes a
deterministic quantity and may be treated with deterministic optimization

techniques.

Joint Probabilities

Suppose that the desired objective is to maximize the joint probability

that <p1[x(tf), tf] be between a  and b and that (pz[x(tf), tf] be between

a, and b2. Arguing as before, d¢ 1 and do o are both Gaussian random

variables, and the joint probability of interest may be written as

b, -¢ b, -, -
72— [ ey [ Pdzenl-t AT Y0 (35)
2n [PV “a -3 ‘a-® ? ?
1 "1 2 T2
where t
T P orar a1l
R L R e L R e oo
(o)

where Ci is the solution of (15) using boundary condition (16) with ®; in

place of ¢. Both theoretically and computationally, two {(t) solutions
are required. Further, two 4(t) solutions are required. The entire de-

velopment may be carried through by analogy to produce dJ as a function

12



of 6§(t0) and du(t). The necessary conditions for stationary J are simply

extended forms of the ones previously given.

Finally, it is clear that the number of functions of the terminal condi-
tions that may be considered may be as many as, but not more than, n, the
number of state variables. J becomes an integral over the joint distribution
of the Gaussian random variables d(,ol, d(pz, --- dgok, k £ n. There will
be 2k expressions similar to, but more complex than, the o and B ex~-
pressions. The basic approach, however, both conceptually and numerically,

is unchanged with k larger than one.
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